Fusing Deep Learning and Sparse Coding for SAR ATR

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modern Approaches in Deep Learning for SAR ATR

Recent breakthroughs in computational capabilities and optimization algorithms have enabled a new class of signal processing approaches based on deep neural networks (DNNs). These algorithms have been extremely successful in the classification of natural images, audio, and text data. In particular, a special type of DNNs, called convolutional neural networks (CNNs) have recently shown superior ...

متن کامل

Unsupervised Feature Learning by Deep Sparse Coding

In this paper, we propose a new unsupervised feature learning framework, namely Deep Sparse Coding (DeepSC), that extends sparse coding to a multi-layer architecture for visual object recognition tasks. The main innovation of the framework is that it connects the sparse-encoders from different layers by a sparse-to-dense module. The sparse-to-dense module is a composition of a local spatial poo...

متن کامل

Online Learning for Matrix Factorization and Sparse Coding Online Learning for Matrix Factorization and Sparse Coding

Sparse coding—that is, modelling data vectors as sparse linear combinations of basis elements—is widely used in machine learning, neuroscience, signal processing, and statistics. This paper focuses on the large-scale matrix factorization problem that consists of learning the basis set, adapting it to specific data. Variations of this problem include dictionary learning in signal processing, non...

متن کامل

Supervised Deep Sparse Coding Networks

In this paper, we propose a novel multilayer sparse coding network capable of efficiently adapting its own regularization parameters to a given dataset. The network is trained end-to-end with a supervised task-driven learning algorithm via error backpropagation. During training, the network learns both the dictionaries and the regularization parameters of each sparse coding layer so that the re...

متن کامل

Sparse coding for multitask and transfer learning

We investigate the use of sparse coding and dictionary learning in the context of multitask and transfer learning. The central assumption of our learning method is that the tasks parameters are well approximated by sparse linear combinations of the atoms of a dictionary on a high or infinite dimensional space. This assumption, together with the large quantity of available data in the multitask ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Aerospace and Electronic Systems

سال: 2019

ISSN: 0018-9251,1557-9603,2371-9877

DOI: 10.1109/taes.2018.2864809